Early Drought Detection by Spectral Analysis of Satellite Time Series of Precipitation and Normalized Difference Vegetation Index (NDVI)
نویسندگان
چکیده
The time lag between anomalies in precipitation and vegetation activity plays a critical role in early drought detection as agricultural droughts are caused by precipitation shortages. The aim of this study is to explore a new approach to estimate the time lag between a forcing (precipitation) and a response (NDVI) signal in the frequency domain by applying cross-spectral analysis. We prepared anomaly time series of image data on TRMM3B42 precipitation (accumulated over antecedent durations of 10, 60, and 150 days) and NDVI, reconstructed and interpolated MOD13A2 and MYD13A2 to daily interval using a Fourier series method to model time series affected by gaps and outliers (iHANTS) for a dry and a wet year in a drought-prone area in the northeast region of China. Then, the cross-spectral analysis was applied pixel-wise and only the phase lag of the annual component of the forcing and response signal was extracted. The 10-day antecedent precipitation was retained as the best representation of forcing. The estimated phase lag was interpreted using maps of land cover and of available soil water-holding capacity and applied to investigate the difference in phenology responses between a wet and dry year. In both the wet and dry year, we measured consistent phase lags across land cover types. In the wet year with above-average precipitation, the phase lag was rather similar for all land cover types, i.e., 7.6 days for closed to open grassland and 14.5 days for open needle-leaved deciduous or evergreen forest. In the dry year, the phase lag increased by 7.0 days on average, but with specific response signals for the different land cover types. Interpreting the phase lag against the soil water-holding capacity, we observed a slightly higher phase lag in the dry year for soils with a higher water-holding capacity. The accuracy of the estimated phase lag was assessed through Monte Carlo simulations and presented reliable estimates for the annual component.
منابع مشابه
Spatial Drought Assessment Using Remote Sensing and GIS techniques in Northwest region of Liaoning, China
In this study, we used the time series images of spectral reflectance from TERRA satellite to compute normalized difference vegetation index (NDVI) and normalized difference moisture index (NDMI) in the Chaoyang City, western Liaoning, north-eastern China. Time-series data of NDVI and NDMI derived from satellite images of the Moderate Resolution Imaging Spectroradiometer (MODIS) were used to sh...
متن کاملCombining Neural Network and Wavelet Transform to Predict Drought in Iran Using MODIS and TRMM Satellite Data
The drought can be described as a natural disaster in each region. In this study, one of the important factors in drought, vegetation, has been considered. For this purpose, monthly vegetation cover images and snow cover data of MODIS and TRMM satellite precipitation product from 2009 to 2018 were used for the study area of Iran. After initial preprocessing, we have used artificial neural netwo...
متن کاملAssessment of Drought Severity Using Vegetation Temperature Condition Index (VTCI) and Terra/MODIS Satellite Data in Rangelands of Markazi Province, Iran
The drought caused a series of effects on many sectors of economy, especially natural resources. During two last decades, Iran has suffered from several severe to extreme agricultural droughts which caused significant decreases in rangeland and agriculture yields. This paper discusses the detection of agricultural drought severity over the rangelands of Markazi Province between 2000 and 2014 us...
متن کاملCorrelation Analysis and Analysis of Drought Time Series Based on Modis Satellite Images and Standardized Precipitation Climatic Index (SPI) on the eastern slope of Zagros
Introduction Drought is one of the environmental disasters that is very frequent in arid and semi-arid regions of the country. Rainfall defects have different effects on groundwater, soil moisture, and river flow. Meteorological drought indices are calculated directly from meteorological data such as rainfall and will not be useful in monitoring drought if the data are missing. Therefore remot...
متن کاملRelationships between Meteorological Drought and Vegetation Degradation Using Satellite and Climatic Data in a Semi-Arid Environment in Markazi Province, Iran
The assessment of relationships between satellite-derived vegetation indices and meteorological drought improves our understanding of how these indices respond to climatic changes. The combination of climate data and the Normalized Difference Vegetation Index (NDVI) product of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery provided an opportunity to evaluate the impact of d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016